VIINIATURE GRYSTAL

CX-3-SM 800kHz to 1.35MHz LOW-PROFILE MINIATURE SMD GRYSTAL

Page

1 of 2

+44(0)1460 230000 Telephone: Fax: +44(0)1460 230001 Email: sales@euroquartz.co.uk Web: www.euroquartz.co.uk

- Extensional mode
- Ideal for use with microprocessors
- Designed for low power applications
- Compatible with hybrid or PCB mounting
- Low ageing
- Full military environmental testing available
- Ideal for battery operated applications

Specification

±0.05% (±500ppm)

800kHz to 1.35MHz

±0.1%

±1.0%

Extensional

Α: **B**:

C:

7pF

1.2fF

150k

1.0pF $3\mu W$ max.

35°C

fo ±5ppm max.

-0.035ppm/°C²

 $\frac{f-fo}{f} = k(T-To)^2$

-55°C~+125°C 260°C for 20 seconds

1,000g peak, 0.3ms, 1/2 sine

-40°~+85°C (industrial) -55°~+125°C (military)

10g rms 20-1,000Hz random -10°~+70°C (commercial)

 $5k\Omega$ max.

Frequency Range: Functional Mode: Calibration Tolerance*:

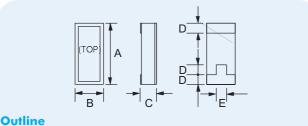
Load Capacitance: Motional Resistance (R₁): Motional Capacitance (C₁): Quality Factor (Q): Shunt Capacitance (C₀): **Drive Level:** Turning Point (T₀)**: **Temperature Coefficient (k):** Note: Frequency (f) deviation from frequency (f0) @ turning point

temperature (t0) =

Ageing, first year: Shock: Vibration, survival: **Operating Temperature:**

Storage Temperature: Max. Process Temperature:

Specifications are typical at 25°C unless otherwise indicated.

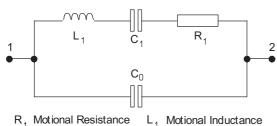

- Closer frequency calibration available
- Other turning point available

Terminations

Designation	Termination
SM1	Gold Plated
SM2	Nickel, Silver Plated
SM3	Nickel, Solder Plated and Solder Dipped

General Description

CX-3-SM quartz crystals are leadless devices designed for surfacemounting on printed circuit boards or hybrid circuits. Hermetically sealed in a rugged, ceramic package, the crystals are produced utilizing a photo-lithographic process giving excellent repeatability and consistent high quality.



CX-3-SM Package Dimensions

Dimension	Typical (mm)	Maximum (mm)
А	6.73	7.11
В	2.62	2.90
С	-	see below
D	1.27	1.52
E	1.32	1.57

Dimension "C"	Glass Lid (mm max.)	Ceramic Lid (mm max.)
SM1	1.47	1.75
SM2	1.52	1.80
SM3	1.60	1.88

Equivalent Circuit

C1 Motional Capacitance C0 Shunt Capacitance

VIINIATURE CRYSTAL

CX-3-SM 800kHz to 1.35MHz LOW-PROFILE MINIATURE SMD GRYSTAL

Page

2 of 2

+44(0)1460 230000 Telephone: Fax: +44(0)1460 230001 Email: sales@euroquartz.co.uk Web: www.euroquartz.co.uk

Circuit Design

Typical Pierce Oscillator Application

The low profile CX miniature surface-mount crystal is ideal for small, battery operated portable products. The CX crystal designed in a Pierce oscillator (single inverter) circuit has a very low current consumption with high stability. A conventional HCMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a Pi network with C_1 and C_2 which provides the additional phase-shift necessary to sustain oscillation. The oscillation frequency (f_0) is 15ppm to 150ppm above the crystal's series resonant frequency (F_s).

Drive Level

 R_{A} is used to limit the crystal's drive level by forming a voltage divider between $R_{\!_{A}}$ and $C_{\!_{1}}.$ $R_{\!_{A}}$ also stabilizes the oscillator against changes in the amplifiers output resistance (R₀). R_A should be increased for higher voltage operation.

Load Capacitance

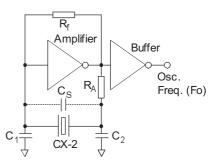
The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_1 .) C_1 is

$$C_{L} = \frac{C_1 \times C_2}{C_1 + C_2} + C_{S}$$

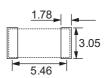
NOTE: C1 and C2 include stray layout capacitance to ground. Cs is the stray shunt capacitance between the crystal terminals. In practice, the effective valus of C₁ will be less than that calculated from C1, C2, and CS values due to the effect of the amplifier output resistance. C_s should be minimized.

The oscillation frequency (f_n) is approximately equal to:

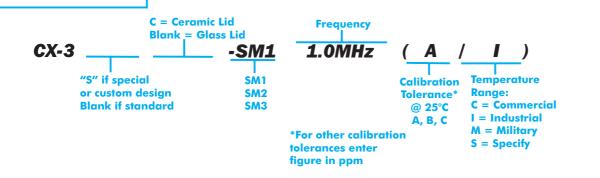
$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_L)} \right]$$


Where F_s = Series resonant frequency of the crystal

C₁ = Motional Capacitance


C₀ = Shunt Capacitance

Order Code


Solder Pad Layout

Packaging

CX-3H-SM- Bulk Pack (Standard)

- 16mm tape, 178mm or 330mm reels (Optional) per EIA 481
 - Tray Pack (Optional)

